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Abstract—This paper is a theoretical study on random initial imperfections of structures. The
explicit form of probability deasity function of the load-bearing capacity (critical load) of structures
is derived for random initial imperfections based on a decompaosition of the space of imperfection
vectors into two orthogonad subspaces: the subspace that asymptotically affeets the load-bearing
capacity and the other that does not. Tight bounds on the range of load-bearing capacity are
presented for various types of simple criticul points. By means of the asymptotic theory of statistics,
we show the inctliciency of a conventional random method that approximates the minimum load-
bearing capacity by the minimum load for & number of random initial imperfections. The theoretical
and empirical probability distribution functions for simple truss structures are compared to show
the validity and effectiveness of the present method.

1. INTRODUCTION

The load-bearing capacity of structures has essential indeterministic nature due to the
unavoidable presence of initial imperfections of structural members and materials, In order
to deal with this indeterministic nature from a stochastic standpoint, it has been proposed
to choose imperfection modes based on known probabilistic propertics, typically the white
noise (e.g., Elishakofl, 1988 ; Lindberg, 1988 ; Kirkpatrick and Holmes, 1989). This method
of random initial imperfections, which obtains the load-bearing capacity (critical loud}) us
a random variable, describes well the stochastic nature of initial imperfections, The mini-
mum load-bearing capacity is to be approximated by the minimum load attained by a
series of rundom initial imperfections. However, this method secems to have i major difficulty
in practical applications in that large amounts of data have to be obtained by numerical
analysis or experiment to estimate a lower bound and a distribution of load-bearing capacity.
Nishino and Hartono (1989) analyzed 20,000 sets of initial imperfections to arrive at an
estimate of the probubility density function of load-bearing capacity of a reticulated truss
dome.

Previous papers by the authors have introduced a method for determining the critical
initial imperfection that asymptotically reduces the load-bearing capacity (critical load)
most rapidly. This method atTords the tight lower bound on the range of load-bearing
capacity with a small amount of computation. The critical imperfection of various types of
simple critical points has been determined in Tkeda and Murota (1990a,b), whereas Murota
and Tkeda (1991) have dealt with double critical points, which appear generically in dome
and shell structures with regular-polygonal symmetry.

Focusing on simple critical points, we investigate in this paper the probabilistic aspect
of imperfections. Definite asymptotic lower and upper bounds of load-bearing capacity are
presented by using the results of critical imperfection. We derive an explicit form of the
probability density function of loud-bearing capacity when the imperfections are chosen at
random. This derivation is based on the fact that the space of imperfection vectors is to be
divided into two orthogonal subspaces : the subspace that affects the load-bearing capacity

1003



1004 K. Ikepa and K. MUROTA

and the other that does not. Since the former subspace is one-dimensional for simple critical
points, this orthogonal decomposition can be easily computed. This makes it possible to
derive vartous kinds of stochastic properties of load-bearing capacity by simple calculations.

This paper is organized as follows. In Section 2 a theory of random initial imperfections
is introduced and the probability density function of load-bearing capacity is determined
for various kinds of simple critical points. With the use of the asymptotic theory of
statistics. we evaluate the accuracy of the random method to estimate the minimum load-
bearing capacity. In Section 3 we demonstrate the probability density functions for simple
example structures whose load-bearing capacities are governed by simple critical points.
and show the validity and effectiveness of the present method.

2. THEORY

An asymptotic theory for random imperfections which s valid in the neighborhood of
the critical point of a perfect system is presented in this section. We derive the probability
density function of load-bearing capacity (critical load) of structures for various types of
stimple critical points. We also consider the distribution of the minimum load-bearing
capacity to be obscrved in experiments, or for many random imperfections.

2.1. Recapitulation

The method proposed by lkeda and Murota (1990a) for determining the critical
imperfection at simple critical points of structures is summarized and extended in this
subsection.

We consider a system of nonlinear equilibrium cquations of a structure

H(A,uv) =0,

where £ denotes a loading parameter ; u indicates an N-dimensional nodal displacement (or
position) vector; and v is a p-dimensional imperfection parameter vector. We assume H to
be sufliciently smooth (or even analytic). We define H in such a manner that the eigenvalues
of the tangent stiffness (Jacobiun) matrix

J=Jhuy) =(J,) = (0”>

Py
(/Uj

of H for the perfect system are all positive at (4,u) = (0,0). This means that the system is
originally (subcritically) in a stable state.

For a fixed v, a set of solutions (4,u) of the above system of equations makes up
equilibrium paths. Let (4.,u,.) = (4.(v),u.(v)) denote the critical point of engineering inter-
est, governing the load-bearing capacity of the structure described by v. The tangent stiffness
matrix is singular at (4. u,..v):

det{J(4. u..v)] = 0.
In particular, this is satisfied by the critical point (47, u?,v®) of the perfect system, where
superscript (-)° refers to the perfect system.
We put

Ao = A0+ A

where 4, means the increment of the critical load. To distinguish the mode and the magnitude
of an imperfection, we write
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v=v"4ed
with a scalar parameter ¢ > 0 and the imperfection mode vector d is normalized as
dWd=1 n

with respect to a positive definite matrix W (to be specified in accordance with the design
principle).

The asymptotic behavior of the increment (increase or decrease) 4, of the critical load
A of the imperfect system is known to be expressed as

A~ C(d)e Q)

when ¢ is small. The increment 4, is characterized by p and C(d). For a simple critical point,
the coeflicient C(d) depends on d only through the variable

a=£7Bd, 3)
where & = £, is the critical eigenvector of
JO = J(A2,ul,v°)

satisfying
, . oH
rjo _ of = r___ >
¢U/=00 el =1 &=72>0

(- denotes the Euclidean norm) and

B=(B,,)=(50— i=l,...,N;j=l....,p) @)
/

(Auy) =(A2,u2v%)

is an N x p constant matrix, called the imperfection sensitivity matrix.
The explicit form of p of eqn (2) has been obtained in Koiter (1945) and that of C(d)
in Ikeda and Murota (1990a) as follows:

p=1, C{d) = —Cya, at limit point;

p=1/2, C(d)= —C,-|a|"? atasymmetric point of bifurcation;
p=2/3, C@)=—Cy-a¥?  atunstable-symmetric point of bifurcation;
p=2/3, C@) =Cya*?, at stable-symmetric point of bifurcation;

&)

where C, is a positive constant. The imperfection pattern vector d that maximizes |C(d)] is
called a critical imperfection.

Figure 1 shows general views of the perfect and imperfect equilibrium paths for these
four types of critical points. The solid lines denote the equilibrium paths for the perfect
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Fig. 1. Imperfections at various kinds of critical points. (1) Limit point. (b) Asymmetric point of
bifurcation. {¢) Unstable-symmetric point of bifurcation. (d) Stable-symmetric point of bifurcation.
{A) Critical points for the perfect structure. (@) Critical points for the imperfect structure,

structure, whereas the dashed lines are those for imperfect ones. The open triangles (A)
express the critical point on the path for the perfect system, the solid circles (@) the critical
point for the imperfect system.

For a limit point the critical load J, either decreases for d and increases for —d, or
increases for d and decreases for —d. For a symmetric point of bifurcation d and —d cxert
the same influence on 4,.

For an asymmetric point of bifurcation, d is to be divided into two categories according
to the angle between d and a certain direction vector, say k. For d with k'd > 0, a limit
point exists on each of the primary and secondary branches of the imperfect system.
Otherwise no critical (limit) point exists on the primary and secondary branches. Obviously,
if d (respectively —d) belongs to the first category, then ~d (respectively d) belongs to the
second. It should be noted that the critical load is reduced for d of the first category. On
the other hand, for d of the sccond an external load 4 increases stably over the critical load
22 for the perfect system and the critical load 24, for the imperfect system cannot be defined.
In this paper, we place an emphasis on d of the first category, which reduces the load-
bearing capacity of the structure.

For a stable-symmetric point an external load 4 can increase stably over the critical
load 4? for the perfect structure. The critical load increment 4, in eqn (2) is associated with
a pair of critical (limit) points on the secondary branches, which do not govern the load-
bearing capacity of the structure. Accordingly, we will not be interested in the stable-
symmetric point of bifurcation in the remainder of this paper.

For the first three types of critical points the values of critical load 4. for the primary
branches of the imperfect system can fall below the nominal value 4°. Thus these types of
points trigger instability by reducing the critical load, and hence are of practical importance.
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The critical imperfection is determined as follows. Seeing that C(d) is determined by
a = {TBd, we decompose the space of imperfection parameters into the direct sum of the
kernel of {78 and its orthogonal complement, where the orthogonality is defined with
respect to W. Namely d = (d,,...,d,)" is decomposed as

d = d o +dior, ©)
where d.q and d,,, are vectors satisfying
By, =0, (dg)" Wi, =0.
Then we have
a={"Bd = {"Bd,q. ¥))

The kernel space is (p — 1)-dimensional and the orthogonal complement is one-dimen-
sional. It is easy to see that the orthogonal complement of ker (£78) is spanned by a vector

d* = W-'B7¢/q, ®)
where the scaling factor
a=({TBW-'BTH"? ®
is introduced to make d* satisfy
d*)" Wd* = 1.

Hence we can define an orthonormal basis (e, ...,e,) (with the orthogonality defined
by W) of the space of d such that

e = d.;
ETBe, =0, i=2,...,p.
Note that (e,,...,e,) spans ker (¢ B) and e, = d* its orthogonal complement. In terms of
d=(@,,....d)" = Ud,

where U7 = (e,,...,¢,) is the p x p orthogonal matrix representing the new basis, we can
express d.y and d,, in eqn (6) as

deﬂ' = atd. = Ur(ahoa e ’O)T‘
r
dker = z aiel = UT(O‘JZO-c-'Jp)Tv (lo)
im2
where d, = (e,)7 Wd. Since d is normalized as eqn (1), we have |4} < 1 (i = 1,...,p).
Substitution of eqn (10) into eqn (7) results in
a=oad,. (H
Only the first component d, of d contributes to a, whereas d, (i = 2, ..., p) have no influence
on a. Thus the original minimization (or maximization) problem of C(d) with p variables

reduces to that of a of eqn (11) with one variable, which is much easier to handle. The
above argument leads to the following important theorems.
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Theorem 1. For a given mode of imperfection d. only the component d.q = d d*
contributes to the change 4. of the critical load i, in the asymptotic sense, whereas d,., has
no effect on .. Asymptotically the imperfections d and d.q reduce the load-bearing capacity
i by the same amount. O

Theorem 2. When d changes under the constraint (1), |C(d)| and hence |4| are
maximized by d = d*, i.e.. by d = (1,0,...,0)7, asymptotically as ¢ — 0. a

Theorem 3. Under the constraint (1), |C(d)| and hence |4.| are minimized (i.e., nullified)
byd=Z?. de,. ie. byd=(0, d,..., ¢7,)T, asymptotically as ¢ - 0. O

We define the maximum and minimum of C(d) with respect to d as

Cmax
C‘min

max {C(d)|d"Wd = 1},
min {C(d)[d"Wd = 1}.

We also define d,,,, (respectively d,,,) as one of the imperfections d that maximizes (respec-
tively minimizes) C(d). Table 1 shows the values of these variables for various kinds of
simple critical points. Thus the values of C(d), and hence those of /., are bounded from
above and below. For an asymmetric point of bifurcation, d,,, is equal to either d* or —d*
and we need to actually compute the imperfect paths for +d* to determine the one which
yields the critical load.

Theorem 4. Under the constraint (1), 4, stays in a bounded range
Conint” € Ac € Cruae’
asymptotically as € - 0. O
2.2. Random imperfection at simple points
We are interested in the stochastic propertics of the change 4, of critical load when
imperfection mode d is given randomly.
If the weight matrix W is equal to the unit matrix /,, the constraint (1) becomes

ldlf =1, (12)

which dictates that the imperfection mode d should stay on the unit sphere in R”. Then it
would be natural to say that the imperfection mode d is random if it distributes uniformly
on this unit sphere.

For a general W we decompose

W=v'y
and define a transformation
d=Vd. (13)

For this new variable d, the constraint (1) reduces to

Table 1. Values of (Copyne Goun) 20nd (Crpas Gonaa) for a simple point

Bifurcation
Type of point Limit point Asymmetric  Unstable-symmetric
Con -C ~Cpa"? ~Cpa®?
d* d*® or ~d* d* and -d*

Cmn Cyﬂ 0 0
don —d* I ode, I!_yde,
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i =1, (14)

which expresses the unit sphere in the space of d. Hence for a general W, we will say that
d is random under the constraint (1) if d distributes uniformly on this unit sphere. Note
that this definition does not depend on the choice of V.

The following lemmas can be shown by elementary calculus.

Lemma 1. When d = (d,,...,d,)" distributes uniformly on the p-dimensional unit
sphere (14), the joint probability density function of (d,,...,d,) (where 1 <g<p—1)is
given as

q . (p—q-2)2
f(dlv"-,dq)=cqp|:l_lzl (d:)b:l ’

where

q (P—q—-2)2 =1
c, = UJ [1- 5 (a,)z] d(dl)...d(dq)}
i+ +d3 g1 im1

r(’%—‘!)(zn)w2

X5 O

Itis to be noted that a general case for which d does not distribute uniformly can be treated
similarly.
Using the transformation (13), a of eqn (3) can be written as

a=t"Bd=¢"BV 'l

This shows that a/[|E"BV '] is a one-dimensional projection of d. On setting ¢ = | in
Lemma 1, we obtain the following by simple calculations.

Lemma 2. If d is a p-dimensional random vector with the constraint (14) (where p > 2),
the probability density function of a = £"Bd is given by

2 He-32
f(a).__%'_ﬂ[l_(f)]p , —a<a<a, (15)

&

where x is defined by eqn (9) ; and

2-p+2 (p—2)" 2 if p=odd
CIP = = R "' = .f _ 'y
B(p_.l p_|> c(p-3) n if p=even
22
and in which B(:, ") is the beta function. O

As a variable to measure the effect of random imperfections, we define a normalized
critical load increment

A

T [Clna®”

{

where |C | is the maximum of |C(d){, which is equal to the greater value of |Cp,,| and
| Cminl- Note that { = 0 corresponds to the nominal value, that is, the critical load 4? for the
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perfect system. Referring to eqns (2) and (5) and Table 1, we see that { asymptotically stays
in the range:

, atlimit point;

I
N NN
e RA e

N NN

1
0, atasymmetric point of bifurcation;
0, at unstable-symmetric point of bifurcation.

Note that the asymptotic range of { for an asymmetric point has been defined for d on the
condition that a limit point exists on the primary branch of the imperfect system.

Using the probability density function (15) for a of eqn (3), we can arrive at the
following theorem which gives the probability density function of the normalized critical
load { = £,/(]Clma:€”) for random imperfections. Asymptotic expressions are derived with
the use of Stirling’s formula

M)~ e "X /2n (x = + o).

Theorem 5. For a random imperfection mode d with a constant ¢ and p 2 2, the
probability density function f({), the expected value E[(], and the variance Var[{] of { are
given for various kinds of critical points as follows.

Limit point :

S =C,(1=) ", —1<{<1,
E[(] =0,

ENCN = 2C"’

2 -1/2
\[J’ (p— +),

Var[{] = E[{*]=p~".

Asymmetric point of bifurcation (conditional on the existence of a limit point) :

fO) =4C, 1Ll =HP", —1<({ <0,
_ 3 p-1
£ = -c,5(3.25)

_21/4

Jr

_2c,
-

2
~ had - 112 L d
J&p (p— + o)

_2cw 3 p—1
Var(d p— [C” ( 2 )]

~%Aﬁﬂﬁwﬂfm=anerm (p— +0).

Frp "= —-08218xp~"* (p= +w),

~

E[{)

Unsiable-symmetric point of bifurcation :
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FQ) =3C, 1K1 A= gP)e, —1<{<0,
5 p—1
E[;] - -ClpB(gv '—2"'>

313

4

N

.l 7 p—1
E[S] = C"B<8'T)

~

F(p "= —-0.80238xp~"* (p— +x).

22/3 .
~—T(Dp ¥ =0.83086xp~¥* (p— +x).

Jx

Var [C] = C|PB(%.E;—I)— [C“,B(g‘p_g_l)]z

~0.18705xp~ % (p - + ).

a

It is to be noted that the probability distribution function of { for an asymmetric point has
been defined as the conditional distribution given that a limit point exists on the primary
branch of the imperfect system.

Figure 2 shows the probability density functions of these three types of critical points
for p=2.3,4,5, 12 and 24. These distributions display strong dependency on the number
p ol imperfection parameters. The probability concentrates around { = 0 as p increases. In
fact, the expected value E£[{] vanishes for a limit point and asymptotically vanishes as p
tends to infinity for bifurcation points, and the standard deviation

~1)2

r (p — +o0), atlimit point;

\/Vtr[gl ~<0.34915xp Y (p— +0), atsymmetric point of bifurcation ;
0.43249xp "' (p— +0o0), atsymmetric point of bifurcation

asymptotically vanishes as p - o0.

This means that the minimum load ({ = —1) is not likely to be approximated by
randomly chosen d, especially when p is large. In other words, the method of random
imperfections will cease to be very effective for large p as a means of evaluating the minimum
load. This indicates the importance of the theory of critical imperfection, which can evaluate
the minimum load with a small amount of computation.

2.3. Distribution of minimum value
It would be natural and rational to approximate the minimum load-bearing capacity
(critical load) by the minimum load achieved by a series of random imperfections d. In this

— | Limit point Asymmetric point Unstable-symmetric p=24
A of bifurcation point of bifurcation
: o} p=24 ~ o p=12
g
-4 -
E p=12
> P 5
E p =4
&~ p=5 -} -
>
i p=4 23
[ -
‘é F p=2
¢ Ps? o .
-1 1 - -0.5 0 -0.5 ]
Normalized critical load increment, { Normalized critical toad increment, { Normalized critical load increment, ¢

Fig. 2. Probability density function of normalized critical load increment ¢.
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section we will evaluate the accuracy of this approximation. We will not consider here the
stable-symmetric point of bifurcation, which does not govern the load-bearing capacity.
Let {« be the minimum value of the normalized critical load { attained by K independent
random imperfections. The cumulative distribution function Fi({«) of (i is given by the
following formula (see Kendall and Stuart, 1977, for the background for statistical theory) :

FeCo) = 1 =1 =F(COI",
where

FO=| r@d

Ymn

is the cumulative distribution function of {, and {,;, = — 1.
The asymptotic form of Fx (as K — + o) is known as follows (see Theorem 2.1.5 of
Galambos, 1978 ; also Kendall and Stuart, 1977).

Lemma 3. If there is a constant y > 0 such that

i FlantU0) _
A Tt 1) (16)

for all x > 0, then

xlern F(Cmin +3x%) = L,(x).

Sy = F-l(I/K)'—Cmm'

l—exp(—x") if x>0,
L = {o if x<0. O

From the concrete forms of /'({) given in Theorem S we see that (16) is satisfied with

p—1

Y=

2

for all cases we consider here (i.e., limit point, asymmetric point of bifurcation, and unstable-
symmetric point of bifurcation).

The scaling factor s, represents the order of magnitude of the discrepancy between
and (... A simple calculation yields

sk = O0(K~') = O(K ™%~ 1)
as K= + oo. This shows
Ik = Cminl = O(K~¥71) (17)
as K — + o0, from which we see that the convergence of {x to (., is extremely slow. This
implies that, for realistic structures with large p, {x will not be rapidly improved, as an

approximation to the (normalized) minimum load-bearing capacity, with the increase of
the number X of random imperfections.
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Fig. 3. Propped caatilever. (a) Perfect system. (b) Imperfect system.

3. NUMERICAL EXAMPLES

3.1. Asymmetric point of bifurcation

Consider the propped cantilever of Fig. 3 comprising a truss member, simply supported
with a rigid foundation at node | and supported by horizontal and vertical springs at node
2. This example has also been used in Ikeda and Murota (1990a). A vertical load 1 is
applied to the free node 2. The set of equilibrium equations is

EA(Y/L—-1/L)(x—x,)+ F] (o) 0

Ht0 = [EA(I/L— VD y=y)+F, ]\ "

x—=x, f(x—x.V'| LY
I e R,

u = (x, )7 is the location of node 2 after displacement ; (x;, y,) is the initial location of node
i(i=12);and F,, and F,, are the horizontal and vertical forces exerted by the springs,
respectively. Note that the nonlinear spring F,. is used to make the bifurcation point
asymmetric,

The solid lines in Fig. 4 show equilibrium paths (4 versus x curves) computed for the

099 100 1.01

0.9

Normalized load, A{EA

Horizontal displacement of node 2,
Fig. 4. Equilibrium paths (4 versus x curves) for the propped cantilever (asymmetric point of
bifurcation). (/) Asymmetric points of bifurcation. (@) Limit points.

SAS 28:8-F
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perfect cantilever from eqn (18). These paths consist of a main path and a pair of bifurcation
paths branching at a simple asymmetric bifurcation point A. The critical eigenvector at A
is &= (1,007 and (42, x. 30) = (EA.0.1/2).

We choose (x,. v,) (i = 1.2) as imperfection parameters. and define

V= (X5 8L X0 ) T
as an imperfection parameter vector (p = 4). In the perfect case. we have
v?=(0,1.0.0)".
The weight matrix is chosen to be the unit matrix. that is.
W=I,.

The imperfection sensitivity matrix

L 0 —1 0
BzEA(o -2 0 0)

is obtained by differentiating H of (18) with respect to v and evaluating at (4, x, y.v) =
(A2, x2, y2.¥").

First we consider the imperfection pattern d,,,,. which should asymptotically yield the
minimum of the critical load increment 4. among all imperfection modes with the same

magnitude £ under constraint (1). The pattern d,,,,, is given as

1 :
dp, =d* =W 'B"¢jx = -~’(l,0.—l.0)' (19

by eqn (8) and Table . We have chosen d,,,, = d* among +d* since in this particular case
the path for d* has a limit point whereas the path for —d* doces not show any limit point.
Next we choose a random imperfection mode vector

d = (0.5382, —0.4637, —0.2394, —0.6618)". (20)
According to eqn (6) this random vector d is to be divided into two parts
d=d,+d,.,.
where

d = 0.3888 x (1,0, - 1,0)",
d,., = (0.1494, —0.4637,0.1494, —0.6618)".

Figure 4 shows the equilibrium paths computed from eqn (18) for the imperfection
pattern vectors dy,.. d. d and d,., with ¢ = 10 “*. The path for the perfect structure with
d° = 0 and that for the imperfect structure with d,., arc very closc (but not identical) in
values showing no discernible difference in the figure. Likewisc the paths for d and d 4 are
very close. It is to be noted that the imperfection d,.. displays the same bifurcation structure
as the perfect structure, with an asymmetric point of bifurcation and a pair of branches.

The critical loads attained by d,. d, d.x and d,., arc 0.963E4, 0.972E4, 0.972EA
and 1.000EA, respectively. Note that d,,, degrades the critical load most rapidly among
these four imperfection vectors. The imperfections d and d ¢ reduce the load-bearing capacity
by approximately the same amount, in accordance with Theorem |. The load-bearing
capacity for d,., is very close to the nominal critical load EA for the perfect case. This shows
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Probability density function, f(()
1

0

-0.5 o

Normalized critical load increment, ¢

4

Fig. 5. Comparison of theoretical and empirical probability density function f({) of normalized

critical load increment { for the propped cantiliver (the empirical distribution is based on
K = 100.000 samples).

the correctness of Theorem 3. which states that an imperfection vector belonging to the
kernel space asymptotically exerts no influence on critical load. The critical load 0.972E4
attained by the random mode d falls between the minimum load 0.963E4 for d,,,, and the
nominal load EA for the perfect case d°, This agrees with Theorem 4.

We have randomly chosen K = 100,000 imperfection modes, which yields a limit
point, and computed the normalized load-bearing capacity (critical load) { for constant
imperfection magnitude £ = 10 . Figure 5 shows a comparison of the histogram obtained
from these 100,000 imperfections with the theoretical probability density function £({) of
normalized critical load increment ¢ given in Theorem 5. The theoretical curve is in good
agreement with the observed histogram. The sample mean E[{] = 0.6097 and the sample
variance Var [{] = 0.5205 obscrved in this experiment are very close to the theoretical values
E[{] = 0.6102 and Var[{] = 0.5207 given in Theorem 5. This assesses the validity of the
present method.

3.2. Limit point and unstable-symmetric point of bifurcation

The shape of probability density function has strong dependency on the number p of
imperfection parameters, as we have already seen in Fig. 2. In order to produce numerical
examples with various values of p, we consider the elastic n-bar trusses (n = 3, 5) shown in
Fig. 6, the clastic triangular truss dome shown in Fig. 7, und the elastic regular-hexagonal
truss dome shown in Fig. 8. Further, for cach of the n-bar trusses of Fig. 6 the height h of
the top node is chosen to be either 0.5 or 3; for the triangular dome of Fig. 7 the height A,
of the lower story and the height 4, of the top node are chosen to be either (4, ;) = (10, 20)
or (20,40). Two types of vertical parametric loadings are applied to the regular-hexagonal
dome of Fig. 8. These loadings include (a) uniform vertical loads 4 applied to each free
node, and (b) vertical loads applied in the proportion of 0.54 for the crown node and 4 for
other free nodes. All the other structures are subjected to the loading (a).

A finite displacement analysis of these trusses has been performed to reveal that their
load-bearing capacitics are governed by either a limit point or an unstable-symmetric point
of bifurcation. Table 2 summarizes the height, the loading. and the structure employed for
each type of critical point.

All members of these structures have the same modulus of elasticity £ and the same
cross-section A for the perfect case. We choose the cross-section A,, of the mth member
(m =1,..., p) as imperfection parameters, and define an imperfection parameter vector

V=(A|.....Al,)r,

which is equal to
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Fig. 6. n-bartrusses (p=n). (@) n=3. (b)n = 5.

V=(A4,... A)

for the perfect structurc. The dimension p of the imperfection vector v for the n-bar trusses
is equal to n, whereas p is equal to 12 for the triangular dome and 24 for the hexagonal
one. The weight matrix is selected to be the unit matrix, i.c. W=/,

The explicit form of the imperfection sensitivity matrix 8 for the imperfection variables
A, (m=1,..., p) has alrcady been obtained in Tkeda and Murota (1990b) as follows :

(21)

1 |
B = [B,‘,,,] = [—E<Z_,"E - Zi’j;)(u,—u,)(ék,—ék,):l

where Lj and L7} denote the initial and deformed member lengths of the mth member
connecting the ith and jth nodes, respectively; u, and u, are the position vectors after

15

30

z

T

Fig. 7. Triangular truss dome structure (p = 12).

0: free nodes
@®: fixed nodes

X
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O: free nodes
@®: fixed nodes
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|25l

Fig. 8. Regular-hexagonal truss dome structure (p = 24).

1.8.216

displacement for the ith and jth nodes, respectively ; and d,; expresses the Kronecker delta,
defined to be zero or one according to whether i # jor i = j.

With the use of B of (21), the critical imperfection d* of (8) was computed. For a limit
point the critical loads for d* and —d* were computed through a finite displacement analysis
to obtain the lower and upper bounds of the critical load increment {.. For a symmetric
point of bifurcation the critical load for d* was computed to obtain its lower bound (its
upper bound is equal to zero). Here and in the sequel imperfection magnitudes were chosen
tobee=10"*forp=3,5and 12;and e = 10~ for p = 24.

For ecach truss structure, we have randomly chosen 100 imperfection modes d and
traced the equilibrium paths to compute the normalized critical load increment {. This
histogram obtained from these 100 imperfections and the theoretical probability density
function f({) given in Theorem 5 are compared in Fig. 9 for a limit point and in Fig. 10
for an unstable-symmetric point of bifurcation. The theoretical curves are in relatively good
agreement with the observed histogram for each case. Nonetheless, 100 random

Table 2. Height, loading and structure employed for each case

P Type of structure Height or loading
(a) Limit point
3 Three-bar truss h=05
5 Five-bar truss h=05
12 Triangular truss dome (hy hy) = (10.20)

24 Regular-hexagonal truss dome Loading (a)

(b) Unstablc-symmetric point of bifurcation

3 Three-bar truss h=3
b Five-bar truss h=3
12 Triangular truss dome (hy, hy) = (20,40)

24 Regular-hexagonal truss dome Loading (b)
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Fig. 9. Comparison of theoretical and cmpirical (K = 100) probability density functions f({) of

normalized critical load increment § for the truss structures (p = 3, 5, 12, 24) for a limit point.

p = 3: three-bar truss; p = S: five-bar truss; p = 12 triangular truss dome structure; p = 24:
regular-hexagonal truss dome structure.

imperfections are not suflicient to yicld smooth curves of empirical probability density
function. This indicates the importance of the present theory.

The relationship between the average E[¢] and the number p of imperfection variables
is shown in Fig. 11, whereas Fig. 12 shows the Vur [{] versus p relationship. The solid lines
denote the theoretical values ; the broken ones the asymptotic formula given in Theorem
S: the circles (@) and the diamonds () represent the empirical data for a limit point and
an unstable-symmetric point of bifurcation, respectively. We can see that £[{] and Var [{]
tend to 0 as p increases, in agreement with the theory. In addition, the asymptotic formula
is accurate enough for all p.

In the course of the analysis of random imperfections, we have obtained the minimum
{x for K random imperfections (1 € K < 100). Figure 13 shows the [(x~{ma| versus K
relationships obtained for each truss structure, where |$x — (| represents the error of {
as an approximation to the minimum load {,,,. The speed of the reduction of the error
Ik = Cminl tends to be slower as pincreases, as anticipated by the asymptotic theory explained
in Subsection 2.3. In particular, for p = 24 the error exceeds 37% even with K = 100. This
shows the incfficiency of a conventional method in approximating the minimum load-
bearing capacity by the minimum load achicved by a series of random imperfections.

4. CONCLUDING REMARKS

In this paper we have made a theoretical study on random initial imperfections of
structures. The basic idea is to decompose the space of imperfection vectors into two
orthogonal subspaces: the subspace that affects the load-bearing capacity and the other
that does not. Then simple calculations have led to various kinds of stochastic properties
of load-bearing capacity. The present method seems to be promising in that it permits the
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Fig. 10. Comparison of theoretical and empirical (K = 100) probability density functions f({) of

normalized critical load increment { for the truss structures (p = 3, 5, 12, 24) for an unstable-

symmetric point of bifurcation. p = 3: three-bur truss; p = 5: five-bar truss; p = 12: triangular
truss dome structure ; p = 24 regular-hexagonal truss dome structure,

estimation of the probability density function of load-bearing capacity with much smaller
cost than by the conventional method of random imperfections.

In order to apply the present analysis to structures other than trusses, one needs to
derive the imperfection sensitivity matrix B for each structure. Nevertheless, the task
involved in its derivation is to differentiate the equilibrium equations with respect to
imperfection variables, and will be comparable to that for deriving the tangent stiffness
matrix J.

theory (limit point)

< O

o |e" °

< asymptotic estimate

k) ~0.80238 x p~!/3

]

S

v O

§ ! theory

3 (unstable-symmetric point)
-— i ' L
'35 12 24

Number of imperfection parameters, p

Fig. 11. Comparison of theoretical and empirical (K = 100) expectation E[{] versus p relationship.
(@) Observed data for a limit point. (O) Observed data for an unstable-symmetric point of
bifurcation.
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Fig. 12. Comparison of theoretical and empirical (K = 100) variance Var [(] versus p relationship.
(@) Observed data for a limit point. (&) Observed data for an unstable-symmetric point of
bifurcation.

Identifying an appropriate set of imperfection parameters demands a sound engineering
judgement. An introduction of redundant parameters which belong only to d,., will not
alter the minimum load but increase the number p of imperfection parameters, and in turn
will sharpen the peak of the probability density function.

Though we have restricted ourselves to simple critical points in this paper, we did
encounter double critical points for structures with geometric symmetry. The present
approach can be extended to analyze the imperfections at double points if it is combined

Limit point

p=2

0.5

Error of (k. ¢k — Caunl

Unstable-symmetric point
of bifurcation

Error of (x, {(x — Gruinl

Number of random imperfections, A

Fig. 13. The decrease of error |y — {mnl With the increase of the number K of random imperfections.



Random initial imperfections of structures 1021

with the group-theoretic study of critical imperfections of Murota and Ikeda (1991). This
will be reported in a forthcoming paper (Murota and Ikeda, 1990).
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