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Abstract -This papcr is a theoretical study on random initial imperfo:ctions of structures. The
e~plidt form of pfllbahility density functil," of the load-bearing capacity (critiealload) of structures
is derived ror randllm initial imperf~'\:tions hased on a d~'Comptlsition of the spa~'C of imperf~'Ction

vc.:tors inti' two orthl'gonal suhspaces: the suospaee that asymptotically alTeets the IOild-bearing
capacity ,II1d the other that does not. Tight hounds on the mnge of load-bearing capacity arc
present.:u fllr various types Ilf simple critie<llpoints. By me<lns of the <lsymptlltic theory of st<ltisties.
we show the inellieiency I'f iI conventional r.ll1uom method th<lt i1ppfOximates the minimum 10<lu­
hearing cilpacity hy thc minimum load fllr <I number of random initi<ll imperf~'Ctions. The theoretical
and cmpirical proh"htlity distrihution functillOs for simple truss structures arc comparcll to show
thc v"lidity ami clr~'Clt\enessof the present method.

l. INTRODUCTION

The load-hearing c~tpadty of structures has essenti~ll indeterministic nature due to the
unavoid;tble presel1l.:e ofiniti;tl imperfections of structural members and nmterials. In order
to de'll with this indeterministic nature from a stochastic standpoint. it has been proposed
to choose imperfection modes based on known probabilistic properties. typically the white
noise (e.g .• Elishakolr. 19~X: Lindberg. 19~8: Kirkpatrick and Holmes. 1989). This method
of random initial imperlections. which obtains the load-bearing capacity (critical load) as
a random variable. des~ribes well the stochastic nature of initi<ll imperfections. The mini­
mum load-bc:aring ~apadty is to be approximated by the minimum load attained by a
series of random initial imperlections. However. this method seems to have a major difficulty
in practical applications in that large amounts of d~lta have to be obtained by numericul
analysis or experiment to estimate a lower bound and a distribution ofload-bearing capacity.
Nishino and Hartono (1989) analyzed 20.000 sets of initial imperfections to arrive at an
estimate of the probability density function of load-bearing capacity of a reticulated truss
dome.

Previous papers 0)" the authors have introduced a method for determining the critical
initial i"'l'",ji'ctioll that 'lsymptotic<llly reduces the load-bearing c<lpacity (critical load)
most rapidly. This method ~llrords the tight lower bound on the range of 10<ld-be<lring
capacity with ~l sm~ll1 amount of computation. The critical imperfection of various types of
simple critical points has been determined in Ikeda and Murota (1990<l.b), where~ls Murota
and Ikeda (1991) have dealt with double critical points. which appear generically in dome
and shell structures with regubr-polygonal symmetry.

Focusing on simple critical points. we investigate in this paper the probabilistic aspect
of imperfections. Definite asymptotic lower and upper bounds of load-bearing capacity arc
presented by using the results of critical imperfection. We derive an explicit form of the
probability density function ofload-bearing capacity when the imperfections arc chosen at
random. This derivation is based on the fact that the space of imperfection vectors is to be
divided into two orthogonal subspaces: the subspace that affects the load-bearing capacity
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and the other that does not. Since the former subspace is one-dimensional for simple critical
points. this orthogonal decomposition can be easily computed. This makes it possible to
derive various kinds ofstochastic properties ofload-bearing capacity by simple calculations.

This paper is organized as follows. In Section 2 a theory of random initial imperfections
is introduced and the probability density function of load-bearing capacity is determined
for various kinds of simple critical points. With the use of the asymptotic theory of
statistics. we evaluate the accuracy of the random method to estimate the minimum load­
bearing capacity. In Section 3 we demonstrate the probability density functions for simple
example structures whose load-bearing capacities are governed by simple critical points.
and show the validity and effectiveness of the present method.

2. THEORY

An asymptotic theory for random imperfections which is valid in the neighborhood of
the critical point of a perfect system is presented in this section. We derive the probability
density function of load-bearing capacity (critical load) of structures for various types of
simple critical points. We also consider the distribution of the minimum load-bearing
capacity to be observed in experiments. or for many random imperfections.

2.1. Recapitulatiof/
The method proposed by Ikeda and Murota (1990a) for determining the critical

imperfection at simple critical points of structures is summarized and extended in this
suosection.

We consider a system of nonlinear equilibrium equations of a structure

110., u, v) = n.

where ;. denotes a loading parameter; u indicates an N-dimensional nodal disphlcement (or
position) vector; and v is a p-dimensional imperfection p<lfamcter vector. We <Issume II to
be sulliciently smooth (or even <Inalytic). We define H in such a manner th<lt the eigenv<llues
of the t<lngent stiffness (J<lcobian) matrix

of H for the perfect system are all positive at ().. u) = (0.0). This means that the system is
originally (subcritically) in a stable state.

For a fixed v. a set of solutions (I., u) of the above system of equations makes up
equilibrium paths. Let o.e' u,.) = o.Av). u,.(v» denote the critical point of engineering inter­
est, governing the load-bearing capacity of the structure described by v. The tangent stiffness
matrix is singuhlr at 0.,. u" v):

det [J()." u~. v») = O.

In particular, this is s<ltisfied by the critical point ().,O, u,o. vOl of the perfect system, where
superscript (.)0 refers to the perfect system.

We put

where /, means the increment of the critical load. To distinguish the mode and the magnitude
of an imperfection. we write
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V = vO+l:d

with a scalar parameter I: ;i!: 0 and the imperfection mode vector d is normalized as

1005

(I)

with respect to a positive definite matrix W (to be specified in accordance with the design
principle).

The asymptotic behavior of the increment (increase or decrease) Ie of the critical load
A.c of the imperfect system is known to be expressed as

(2)

when I: is small. The increment Xc is characterized by p and C(d). For a simple critical point.
the coefficient C(d) depends on d only through the variable

(3)

where ~ = ~ I is the critical eigenvector of

satisfying

(\1'11 denotes the Euclidean norm) and

( iJH11 ,. . )B = (BI) = 7h; _ 0 0 0 I = I •.... N ;} = I .... ,P
J (A,_." 0<,-<."

(4)

is an N x p constant matrix, called the imperfection sensitivity matrix.
The explicit form of p of eqn (2) has been obtained in Koiter (1945) and that of C(d)

in Ikeda and Murota (1990a) as follows:

!
P= I,

p = 1/2.

P = 2/3.

P = 2/3.

C(d) = -Coo.

C(d) = -Co'laI I/2
,

C(d) = -Co'am ,

C(d) = Co' a2
/l,

at limit point;

at asymmetric point of bifurcation;

at unstable-symmetric point of bifurcation;

at stable-symmetric point of bifurcation;

(5)

where Co is a positive constant. The imperfection pattern vector d that maximizes IC(d)1 is
called a critical imperfection.

Figure I shows general views of the perfect and imperfect equilibrium paths for these
four types of critical points. The solid lines denote the equilibrium paths for the perfect



1006 K. [KEDA and K. \1cRor.A

(a.) (b)
secondary
branches

--< v
.....- .......... --<

~-
--<

".... .....-d ...,
'" '".2 ov / .2

"""
,

-; ,
£=0 -;

v /c: --< / c:
;; / Oi
-;( / '" d -;(

LJJ I '" LJJ
'"1 ,

I,
,

1.'/

Displacement

(c) (d)

--< --<
...; ...,
'" "'.2 .2
-; v -;

c:: --< c::

~
Oi

)(
-;(

LJJ W

Displacement

Fig. I. Imperfections al various kinus of critical points. (a) Limil poin!. (11) Asymmctric point of
bifllrc:ltion. (c) l1nst:lblc-symmctric point of bifurcation. (1I) Stable-symmctric point of hifllrcatioll.

(~) Critic:ll points for thc perf~'Cl structurc. (.) Critical points for thc imperfed structurc.

structure, whereas the d~lshed lines are those for imperfect ones. The open triangles (.6,)
express the critical point on the path for the perfect system, the solid circles (.) the critical
point for the imperfect system.

For a limit point the critical load le either decreases for d and increases for -d, or
increases for d and decreases for - d. For a symmetric point of bifurcation d and - d exert
the same intluence on 1,.

For an asymmetric point of bifurcation. d is to be divided into two categories according
to the angle between d and a certain direction vector. say k. For d with k rd > O. a limit
point exists on each of the primary and secondary branches of the imperfect system.
Otherwise no critical (limit) point exists on the primary and secondary branches. Obviously,
ifd (respectively -d) belongs to the first category, then -d (respectively d) belongs to the
second. It should be noted that the critical load is reduced for d of the first category. On
the other hand, for d of the second an external load i. increases stably over the critical load
).~ for the perfect system and the critical load i.e for the imperfect system cannot be defined.
In this paper. we place an emphasis on d of the first category. which reduces the load­
bearing capacity of the structure.

For a stable-symmetric point an external load i. can increase stably over the critical
load i.~ for the perfect structure. The critical load increment I., in eqn (2) is associated with
a pair of critical (limit) points on the secondary branches, which do not govern the load­
bearing capacity of the structure. Accordingly. we will not be interested in the stable­
symmetric point of bifurcation in the remainder of this paper.

For the first three types of critical points the values of critical load i'e for the primary
branches of the imperfect system can fall below the nominal value i.~. Thus these types of
points trigger instability by reducing the critical load, and hence are of practical importance.
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The critical imperfectioft is determined as follows. Seeing that C(d) is determined by
a - ~TBd. we decompose the space of imperfection parameters into the direct sum of the
kernel of ,TB and its orthogonal complement, where the orthogonality is defined with
respect to W. Namely d - (d..... , d,)T is decomposed as

(6)

where d.,1I' and dkcT are vectors satisfying

Then we have

a - ~TBel - eTBd.,ll" (7)

The kernel space is (p - I)-dimensional and the orthogonal complement is one-dimen­
sional. It is easy to see that the orthogonal complement of ker (eTB) is spanned by a vector

(8)

where the scaling factor

(9)

is introduced to make d* satisfy

Hence we can define an orthonormal basis (e ••...• e,) (with the orthogonality defined
by W) of the space of d such that

eTBej - O. i - 2•... •p.

Note that (e2"" ,e,) spans ker(eTB) and e. = d* its orthogonal complement. In terms of

a== (d... .. ,d,f - Ud,

where U T = (e I, ... ,e,) is the p x p orthogonal matrix representing the new basis, we can
express dell' and d ker in eqn (6) as

,
d ker - L d;el - UT(O,dh ... ,d,)T,

1- 2

where d; - (e/)TWd. Since d is normalized as eqn (I), we have 1d;1 ~ I (i - I, ... ,pl.
Substitution of eqn (10) into eqn (7) results in

a - a.d•.

(10)

(II)

Only the first component dl ofacontributes to a, whereas d; (i = 2, ... ,p) have no influence
on a. Thus the original minimization (or maximization) problem of C(d) with p variables
reduces to that of a of eqn (II) with one variable, which is much easier to handle. The
above argument leads to the following important theorems.
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Theorem l. For a giun mode of imperfection d. only the component c1e1f = Jld'"
contributes to the change Ie of the critical load A.cin the asymptotic sense. whereas doer has
no effect on Ie. Asymptotically the imperfections d and c1e1f reduce the load-bearing capacity
A.e by the same amount. 0

Theorem 2. When d changes under the constraint (I), IC(d)1 and hence lIe/ are
maximi=ed by d = d"', i.e.• by a= (1,0, ... ,0) T, asymptotically as e -+ O. 0

Theorem 3. Under the constraint (I), lC(d)1 and hence 11c l are minimi:ed (i.e .• nullified)
by d = rr_zJ,e,. i.e., by ci = (0, Jz, ... , Jp ) T. asymptotically as e -+ O. 0

We define the maximum and minimum of C(d) with respect to d as

em.. = max {C(d)!dTWd = I},

Cm;n = min {C(d)ldTWd = I}.

We also define dma• (respectively dmm ) as one of the imperfections d that maximizes (respec­
tively minimizes) C(d). Table I shows the values of these variables for various kinds of
simple critical points. Thus the values of C(d). and hence those of Ie' are bounded from
above and below. For an asymmetric point of bifurcation. dm;n is equal to either d'" or - d'"
and we need to actually compute the imperfect paths for ±d· to determine the one which
yields the critical load.

Theorem 4. Under the constraint (I), i, stays in a hounded range

asymptotically as c -+ O. o
2.2. Random imperfection ell simple points

We arc interested in the stochastic properties of the change Xc of critical load when
imperfection mode d is given randomly.

If the weight matrix W is equal to the unit matrix [p. the constraint (I) becomes

IIdll = I, (12)

which dictates that the imperfection mode d should stay on the unit sphere in RP. Then it
would be natural to say that the imperfection mode d is random if it distributes uniformly
on this unit sphere.

For a general W we decompose

W= VTV

and define a transformation

a= Vd.

For this new variable a, the constraint (I) reduces to

Table I. Values of (Cm,., dm,.) and (C..... d.... ) for a simple point

Bifurcation

Type of point Limit point Asymmetric Unstable-symmetric

Cm1n -Cr/Z -Coa": - Cr/Z:iJ
dm1n d· d· or -d· d· and -d·

C.... C"a. 0 0
d.... -d· r.f. :J.e, r.f. :J.e,

( 13)



Random initial imperfections of structures 1009

(14)

which expresses the unit sphere in the space of a. Hence for a general W, we will say that
d is random under the constraint (I) if adistributes uniformly on this unit sphere. Note
that this definition does not depend on the choice of V.

The following lemmas can be shown by elementary calculus.

Lemma I. When a= (at. ... , ap)T distributes uniformly on the p-dimensional unit
sphere (14). the joint probability density function of (at. ... ,aq) (where 1 ~ q ~ p-I) is
given as

where

Cqp ={f... r. [1- t (a/)2]<P-q- 2);2 d(a,) ... d(aq)}- I

Jcli+'''+cl; .. I /_ I

r(9)<21t)q;2
= r(pj2) o

It is to be noted that a general case for which adoes not distribute uniformly can be treated
similarly.

Using the transformation (13). a of eqn (3) can be written as

This shows th<lt allle1'BV-- 1
1i is a one-dimension<ll projection of a. On setting q = I in

Lemma I. we obtain the following by simple calculations.

Lemma 2. If d is a p-dimensional random vector with the constraint (14) (where p ~ 2),
the probability density function of a = eTBd is given by

C [ (a)2J(p- 3)/2
f(a) =~ 1- - ,

Ct Ct

where :x is defined by eqn (9) ; and

-Ct < a < Ct, (15)

2- p + 2 (p-2)!! {2
C. P = ( ) = ( 3)'" c = 1tp_1 p-I C' p- ..

B 2' 2

if p = odd

if p = even'

and in which B(',') is the beta function. 0
As a variable to measure the effect of random imperfections, we define a normali:ed

critical load increment

where Ielm.. is the maximum of IC(d)l, which is equal to the greater value of ICm..1and
ICminl. Note that' = 0 corresponds to the nominal value, that is, the critical load A.~ for the



1010 K. IKEDA and K. MlJROTA

perfect system. Referring to eqns (2) and (5) and Table I, we see that' asymptotically stays
in the range:

{

-I ~,~ I, at limit point;

- 1 ~ , ~ 0, at asymmetric point of bifurcation;

- I ~ , ~ 0, at unstable-symmetric point of bifurcation.

Note that the asymptotic range of ( for an asymmetric point has been defined for d on the
condition that a limit point exists on the primary branch of the imperfect system.

Using the probability density function (IS) for a of eqn (3), we can arrive at the
following theorem which gives the probability density function of the nonnalized critical
load ( = A'c/(IClma.ff) for random imperfections. Asymptotic expressions are derived with
the use of Stirling's formula

Theorem 5. For a random imperfection mode d with a constant .: and p ~ 2, the
probability density function f«(), the expected value E[(], and the variance Var [(] of ( are
gil'enfor various kinds ofcritical points asfollows.

Limit point :

f(O = CI,,(I_(z)(,,-JlIZ, -I < {< I,

E[(] = 0,

E[I(I] = 2CI
"

p-I

- Ap-I/Z (p- +(0),

Var [(] = E[(Z] = p- I.

Asymmetric point ofbifurcation (conditional on the existence ofa limit point) :

f(O = 4C I"ICI(I_{4)(,,-31/2, -I < « 0,

E[(] = -CI"B(~, p; I)

_2 1/4

- fi f(j)p-I/4 = -0.82218 Xp-I/4 (p- +(0),

(p- +(0),

2C I" [ (3 P-I)J2Var[(] = p_1 - C1"B 4'-2-

_J2 {fi-[rO)P}p-I/Z = 0.12\9\ Xp-I/Z
7t

Unstable-symmetric point ofbifurcation:

(p - +(0).
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f(~) = 3C
"

IClI,2(1- "1 3)(,- 3)/2, - 1 < , < 0,

£[~ = -CI,BG, p; I)

lOll

(p- +x),

., 2: 3-J; r(l)p-2:3 = 0.83086 Xp-213 (p - + x),

Var[~ = CIPBG,P~I)_[CIPBG,P~I)J

- 0.18705xp- 213 (p- +00).

o

It is to be noted that the probability distribution function of' for an asymmetric point has
been defined as the conditional distribution given that a limit point exists on the primary
branch of the imperfect system.

Figurc 2 shows the probability density functions of these three types of critical points
for f' = 2, 3. 4, 5, 12 and 24. These distributions display strong dependency on the number
f' of impcrfcction parametcrs. The probability concentrates around ~ = 0 as f' increases. In
fact. the c:'tpectcd valuc Er(] vanishes for a limit point and asymptotically vanishcs as f'
tends to infinity for bifurcalion points, and thc standard deviation

{

f' 1/2

JV~;r[') - 0.34915 x f' 1;4

0.43249 x f' 1/.\

(I' - + 00), at limit point;

(I' - + 00), at symmetric point of bifurcation;

(I' - + 00), at symmetric point of bifurcation

asymptotically vanishes as f' - 00.

This means that the minimum load «( = - I) is not likely to be approximated by
randomly chosen d, especially when I' is I~lrge. In other words, the method of random
imperfections will cease to be very effective for large p as a means ofevaluating the minimum
load. This indicales the importance of the theory ofcritical imperfection, which can evaluate
the minimum IO~ld with a small amount of computation.

2.3. Distrihution ofminimum va/ue
It would be natural and rational to approximate the minimum load-bearing capacity

(critical load) by the minimum load achieved by a series of random imperfections d. In this

Norm~li..d critic~1 Itnd increment. ( Norm~li..d criticalltnd increment. ( Norm~li..d critic~1 lo~d increment. (

Fig. 2. Probability density function of normalized critical load increment ,.
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section we will evaluate the accuracy of this approximation. We will not consider here the
stable-symmetric point of bifurcation. which does not govern the load-bearing capacity.

Let 'K be the minimum value of the normalized critical load 'attained by K independent
random imperfections. The cumulative distribution function FK«(d of ~K is given by the
following formula (see Kendall and Stuart. 1977. for the background for statistical theory):

where

F(C) = I:," /(0 d'
is the cumulative distribution function of C. and Cmin = - I.

The asymptotic form of FK (as K -+ + (0) is known as follows (see Theorem 2.1.5 of
Galambos, 1978; also Kendall and Stuart, 1977).

Lemma 3. If there is a constant y > 0 such that

for all x > O. then

where

I
. F(Cmin + I/(t:c» -"
1m = X' '

1-+"0 F(Cmin+ I/t) . ( 16)

{
1-eXp (_:c1)

Ly(x) = 0
if x> 0,

if x < O. o

From the concrete forms of/(C) given in Theorem 5 we see that (16) is satisfied with

p-I
'1=-­

2

for all cases we consider here (Le., limit point. asymmetric point of bifurcation. and unstable­
symmetric point of bifurcation).

The scaling factor SK represents the order of magnitude of the discrepancy between C,.
and Cmin' A simple calculation yields

as K -+ + 00. This shows

(17)

as K -+ + 00, from which we see that the convergence of CK to Cmin is extremely slow. This
implies that, for realistic structures with large p, CK will not be rapidly improved. as an
approximation to the (normalized) minimum load-bearing capacity, with the increase of
the number K of random imperfections.



Random initial imperfcctions of structures 1013

(a) (b)

0: free node
.: fixed node

initial

displaced

(0,1) (x\,y\l

Fig. 3. Propped cantilever. (al Perfect system. (b) Imperfect system.

(0 •0) 0'2:-X......-J\.MN'-..L-_t:R

y

(18)

3. NUMERICAL EXAMPLES

3.1. Asymmetric point ofbifurcation
Consider the propped cantilever of Fig. 3 comprising a truss member, simply supported

with a rigid foundation at node I and supported by horizontal and vertical springs at node
2. This example has also been used in Ikeda and Murota (1990a). A vertical load A is
applied to the free node 2. The set of equilibrium equations is

[
EA(I/L-I/i)(X-XI)+F,<] (0)

H(A.D.V)= EA(I/L-I/i)(y-y,)+F,v - A =0.

where

u = (x. y)T is the location of node 2 after displacement; (Xi, Yi) is the initial location of node
i (i = 1.2); and F... and F•• are the horizontal and vertical forces exerted by the springs.
respectively. Note that the nonlinear spring F... is used to make the bifurcation point
asymmetric.

The solid lines in Fig. 4 show equilibrium paths (). versus x curves) computed for the

qr-----------r--~...
8....

-0,05 0
Horizontal displacement of node 2. %

Fig. 4. Equilibrium paths (). versus x curves) for the propped cantilever (asymmetric point of
bifurcation). (b.) Asymmetric points of bifurcation. (e) Limit points.

SAS 28:8-F
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perfect cantilever from eqn (18). These paths consist of a main path and a pair of bifurcation
paths branching at a simple asymmetric bifurcation point A. The critical eigenvector at A
is ~ = (I,O)T and (A.~,X,O,y~) = (£A.0.1/2).

We choose (x" y,) (i = I, 2) as imperfection parameters, and define

as an imperfection parameter vector (p = 4). In the perfect case, we have

The weight matrix is chosen to be the unit matrix, that is,

The imperfection sensitivity matrix

o
-2

is obtained by differentiating H of (18) with respect to v and evaluating at 0,. x, y. v) =
(A~. x~, YIO, vOl.

First we consider the imperfection pattern dm,"' which should usymptotically yield the
minimum of the criticul load increment Ac among all imperfection modes with the samc
magnitude r. under constraint (I). The pattcrn dm," is given as

d -d* - w··'n r ,/ - I (10 10)rnlln - - ., (J. _., ... - ..

J2
(19)

by cqn (8) and Table I. We huve choscn dmm =d* among ±d* since in this particular case
the path for d* has a limit point whereas the puth for -d* docs not show any limit point.

Next we choose a random imperfection mode vector

d = (0.5382, -0.4637, -0.2394. -0.6618)r,

According to eqn (6) this random vector d is to be divided into two parts

where

de'f = 0.3888 x (1,0, _1,0)',

dkcr = (0.1494, -0.4637,0.1494. -0.6618)'.

(20)

Figure 4 shows the equilibrium paths computed from eqn (18) for the imperfection
pattern vectors d mm , d, defT and d ker with c = 10·' J. The path for the perfect structure with
dO = 0 and that for the imperfect structure with dker are very close (but not identical) in
values showing no discernible difference in the figure. Likewise the paths for d and defT are
very close. It is to be noted that the imperfection dkcr displays the same bifurcation structure
as the perfect structure, with an asymmetric point of bifurcation and a pair of branches.

The critical loads attained by dm,", d, delT and dkcr arc 0.963£.4. 0.972£.4, 0.972£.4
and I.OOO£A, respectively. Note that dmi" degrades the critical load most rapidly among
these four imperfection vectors, The imperfections d and defT reduce the load-bearing capacity
by approximately the same amount, in accordance with Theorem I. The load-bearing
capacity for dker is very close to the nominal critical load EA for the perfect case. This shows
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Fig. 5. Comparison of theoretical and empirical probability density function fIe) of normalized
critical load increment , for the propped cantiliver (the empirical distribution is based on

11. = 100.000 samples).

the correctness of Theorem 3. which states that an imperfection vector belonging to the
kernel space asymptotically exerts no influence on critical load. The critical load 0.972EA
attained by the random mode d falls between the minimum load 0.96JEA for dmIR and the
nominal load EA for the perfect case dO. This agrees with Theorem 4.

We have randomly chosen K = 100.000 imperfection modes. which yields a limit
point. and computed the norm'llized load-bearing capacity (critical load) , for constant
imperfection magnitude f; = 10 1

• Figure 5 shows a comparison of the histogram obtained
from these 100.000 imperfections with the theoretical probability density functionf<C> of
normalized critical load increment' given in Theorem 5. The theoretical curve is in good
agreement with the observed histogram. The s'lmple mean E[{] = 0.6097 and the sample
variance Var [{] = 0.5205 observed in this experiment are very close to the theoretical values
E[{] = 0.6102 and Var[(] = 0.5207 given in Theorem 5. This assesses the validity of the
present method.

3.2. Limit point tmtlllllstahle-symmetric poillt ofhifl/rct/tilm
The shape of probability density function has strong dependency on the number p of

imperfection parameters. as we have already seen in Fig. 2. In order to produce numerical
examples with various values of p. we consider the clastic II-bar trusses (n = 3.5) shown in
Fig. 6. the elastic triangular truss dome shown in Fig. 7. and the elastic regular-hexagonal
truss dome shown in Fig. 8. Further. for each of the n-bar trusses of Fig. 6 the height h of
the top node is chosen to be either 0.5 or 3; for the triangular dome of Fig. 7 the height hi
of the lower story and the height 11 1 of the top node are chosen to be either (II (. hz) = (10.20)
or (20.40). Two types of vertical parametric loadings are applied to the regular-hexagonal
dome of Fig. 8. These loadings include (a) uniform vertical loads ), applied to each free
node. and (b) vertical loads applied in the proportion 01'0.5;, for the crown node and ..l. for
other free nodes. All the other structures arc subjected to the loading (a).

A finite displacement analysis of these trusses has been performed to reveal that their
load-bearing capacities are governed by either a limit point or an unstable-symmetric point
of bifurcation. Table 2 summarizes the height. the loading. and the structure employed for
each type of critical point.

All members of these structures have the same modulus of elasticity E and the same
cross-section A for the perfect case. We choose the cross-section Am of the mth member
(m = I•...• p) as imperfection parameters. and define an imperfection parameter vector

which is equal to
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Fig. 6. n-bar trusses (p "" n). (a) n = 3. (b) n = 5.

V
O = (A •. 0 o. A)T

for the perfect structure. The dimension p of the imperfection vector v for the n-bar trusses
is equal to n. whereas p is equal to 12 for the triangular dome and 24 for the hexagonal
one. The weight matrix is selected to be the unit matrix. i.e. W = [po

The explicit form of the imperfection sensitivity matrix B for the imperfection variables
Am (m = I. 0 0 •• p) has already been obtained in Ikeda and Murata (1990b) as follows:

(21 )

where L:j and L~ denote the initial and deformed member lengths of the mth member
connecting the ith and jth nodes. respectively; u, and uJ are the position vectors after

z

t 0: free nodes
e: fixed nodes

30 I 20 I 25 I 15 I

Fig. 7. Triangular truss dome structure (p = 12).
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Fig. ll. Rcguhlr-hc~i1gunaltruss dume structure (p '"' 24).

displacement for the ith andjth nodes. respectively; and o/j expresses the Kronecker delta.
defined to be zero or one according to whether i '" j or i = j.

With the use of B of (21). the critical imperfection d* of (8) was computed. For a limit
point the critical loads for d* and - d* were computed through a finite displacement analysis
to obtain the lower and upper bounds of the critical load increment J.,. For a symmetric
point of bifurcation the critical load for d* was computed to obtain its lower bound (its
upper bound is equal to zero). Here and in the sequel imperfection magnitudes were chosen
tobee= 1O- 4 forp=3.5and 12;andt:= 1O- 3 forp=24.

For each truss structure. we have randomly chosen 100 imperfection modes d and
traced the equilibrium paths to compute the normalized critical load increment C. This
histogram obtained from these 100 imperfections and the theoretical probability density
functionf(O given in Theorem 5 are compared in Fig. 9 for a limit point and in Fig. 10
for an unstable-symmetric point of bifurcation. The theoretical curves are in relatively good
agreement with the observed histogram for each case. Nonetheless, 100 random

Table ::!. Height. loading and structure employed for each case

p Type of structure

(a) Limit point
3 Three-bar truss
5 Five-bar truss

12 Triangular truss dome
24 Regular-he~agonal truss dome

Height or loading

h =- 0.5
h =- 0.5
(h,.h z) =- (10.20)
loading (a)

(bl Unstable-symmetric point of bifurcation
3 Three-bar truss h =- 3
5 Five-bar truss h =- 3

12 Triangular truss dome (h"h z) = (20,40)
24 Regular-he~agonal truss dome loading (b)
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I' = 3: thrcc-har truss; f' =5: livc-har truss; I' - 12: triangular truss domc structure; f' = 24:

rcgular-hcxagonaltruss domc structurc.

imperfections are not sullicient to yield smooth curves of empirical probability density
function. This indicates the importance of the present theory.

The relationship between the average E [(J and the number p of imperfection variables
is shown in Fig. II, whereas Fig. 12 shows the Var [(] versus p relationship. The solid lines
denote the theoretical values; the broken ones the asymptotic formula given in Theorem
5: the circles (.) lind the diamonds (<» rcpresent the empiric.ll data for a limit point and
an unstable-symmetric point of bifurcation. respectively. We can see that E[(] and Var [(]
tend to 0 as p increases, in agreement with the theory. In addiLion. Lhe asymptotic formula
is accurate enough for all p.

In the course of the analysis of random imperfections. we have obLained the minimum
e.... for K random imperfections (I ~ K ~ 100). Figure 13 shows the " .... -em,nl versus K
relationships obtained for each truss strLlI.:tUfI':. where 1(""-(lIlonl represents the error of (,...
as an approximation to the minimum load (1ll11I' The speed of the reduction of the error
" .... - (min I tends Lo be slower as p increases. as anticipated by the asymptotic theory explained
in Subsection 2.3. In particular. for p = 24 Lhe error exceeds 37% even with K = 100. This
shows the inetficiency of a conventional method in approximating the minimum load­
bearing capacity by the minimum load achieved by a series of random imperfections.

4. CONCLUDING REMARKS

In this paper we have made a theoretical study on random initial imperfections of
structures. The basic idea is to decompose the space of imperfection vectors into two
orthogonal subspaces: the subspace th.lt affects the load-bearing capacity and the other
that does not. Then simple calculations have led to various kinds of stochastic properties
of load-bearing capacity. The present method seems to be promising in that it permits the
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Fig. Ill. Comp;lrison of theoretical ;Ind empirical (K = 1(0) probability density functions ftC) of
norm;lliled critical Imld increment' for the truss structures (p = 3. 5. 12. 24) for an unstable­
symmetric point of bifurcatioll. p = 3: thn:e-bar truss; p = 5: five-bar truss: p = 12: triangular

truss dome structure; p = 24: regular-hexagomlltruss dome structure.

estimation of the probability density function of load-bearing capacity with much smaller
cost than by the conventional method of random imperfections.

In order to apply the present analysis to structures other than trusses, one needs to
derive the imperfection sensitivity matrix. B for each structure. Nevertheless, the task
involved in its derivation is to differentiate the equilibrium equations with respect to
imperfection variables, and will be comparable to that for deriving the tangent stiffness
matrix. J.

theory (limit point)
v Ol-_.----:-"-------Ki

w· •
....;.
'0..

:::I
;;
> In

"'0:! I
u..
c..
~

asymptotic estimate

-0.80238 x ~p-_l_/J_---'Q1

l
" \theory

(unstable-symmetric point)

~L.L-'- """ --'U

I 3 5 12 24
Number of imperfection parameters. p

Fig. tl. Comparison of theoretical and empirical (K = tOO) eltpectation EtC! versus p relationship.
(.) Observed data for a limit point. (<» Observed data for an unstable-symmetric point of

bifurcation.
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3 5 12 24
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Fig. 12. Comparison of theoretical and empirical (K = 100) variance Var KJ versus p relationship.
(.) Observed data for a limit point. (0) Observed data for an unstable-symmetric point of

bifurcation.

Identifying an appropriate set of imperfection parameters demands a sound engineering
judgement. An introduction of redundant parameters which belong only to dkcr will not
alter the minimum load but increase the number p of imperfection parameters. and in turn
will sharpen the peak of the probability density function.

Though we have restricted ourselves to simple critical points in this paper. we did
encounter double critic..1 points for structures with geometric symmetry. The present
approach can be extended to analyze the imperfections at double points if it is combined

-rr-----------........,Limit point

-;
'il

v-
I
:..: lD:::c

0:..:v--0
2w

0 0

p=3

50 100
.,..~~-~--""""':"-~-----,

Unstable-symmetric point
of bifurcation

p;: 24

p = 12

Number of random imperfections, K

Fig. 13. The decrease of error I~~ - (mo.J with the increase of the number K of random imperfections.
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with the group-theoretic study of critical imperfections of Murota and Ikeda (1991). This
will be reported in a forthcoming paper (Murota and Ikeda, 1990).
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